Rutgers University: Algebra Written Qualifying Exam January 2015: Problem 2 Solution

Exercise. Let $\mathbb{Z}[x]$ denote the polynomial ring in the variable x with coefficients in \mathbb{Z} .

(a) Let $I \subset \mathbb{Z}[x]$ be the ideal consisting of all elements whose constant term is 0. Prove that I is a prime ideal of $\mathbb{Z}[x]$ but not a maximal ideal.

Solution
I is an <u>ideal</u> so $(I, +)$ is a group and $\forall r \in \mathbb{Z}[x], i \in I$,
$ri \in I$ and $ir \in I$.
<u>Prime</u>: An ideal I is <u>prime</u> if $ab \in I \implies a \in I$ or $b \in I$. Let $a, b \in \mathbb{Z}[x]$. Then
$a(x) = a_n x^n + \dots + a_1 x + a_0$ and $b(x) = b_m x^m + \dots + b_1 x + b_0$.
The constant term of ab is a_0b_0 . Therefore, if $ab \in I$, then $a_0b_0 = 0$ $\implies a_0 = 0$ or $b_0 = 0$ $\implies a \in I$ or $b \in I$ Thus, I is a prime ideal in $\mathbb{Z}[x]$.
Not Maximal: An ideal I is called maximal if \exists an ideal J s.t. $I \subseteq J \subseteq \mathbb{Z}[x]$
We want to find an ideal J s.t. $I \subseteq J \subseteq \mathbb{Z}[x]$
Let J consist of all elements with an even constant term
Then $I \subset J \subset \mathbb{Z}[x]$
J is an ideal because for $a \in J$ and $b \in \mathbb{Z}[x]$.
ab and ba have even constant term a_0b_0 , since a_0 is even and $b_0 \in \mathbb{Z}$
and $(J, +)$ is closed under addition and inverses and contains the identity 0.

(b) Prove that $\mathbb{Z}[x]$ is not a principal ideal domain

Solution.

A **principal ideal domain** is an integral domain (i.e. commutative ring with multiplicative identity and no zero divisors) in which every proper ideal can be generated by a single element.

J, as defined in part (a), is an ideal that is **<u>NOT</u>** principal. $5x + 2 \in J$ but it cannot be reduced in $\mathbb{Z}[x]$ \implies If $\mathbb{Z}[x]$ is a PID, then J must be a principal ideal and generated 5x + 2. But $x + 2 \in K$ and $x + 2 \notin \langle 5x + 2 \rangle$. $\implies J$ is not a principal ideal $\implies \mathbb{Z}[x]$ is not a PID.