Rutgers University: Algebra Written Qualifying Exam

January 2015: Problem 2 Solution

Exercise. Let $\mathbb{Z}[x]$ denote the polynomial ring in the variable x with coefficients in \mathbb{Z}.
(a) Let $I \subset \mathbb{Z}[x]$ be the ideal consisting of all elements whose constant term is 0 . Prove that I is a prime ideal of $\mathbb{Z}[x]$ but not a maximal ideal.

Solution.

I is an ideal so $(I,+)$ is a group and $\forall r \in \mathbb{Z}[x], i \in I$,

$$
r i \in I \text { and } i r \in I .
$$

Prime: An ideal I is prime if $a b \in I \Longrightarrow a \in I$ or $b \in I$.
Let $a, b \in \mathbb{Z}[x]$. Then

$$
a(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \quad \text { and } \quad b(x)=b_{m} x^{m}+\cdots+b_{1} x+b_{0}
$$

The constant term of $a b$ is $a_{0} b_{0}$.
Therefore, if $a b \in I$, then $a_{0} b_{0}=0$

$$
\begin{aligned}
& \Longrightarrow a_{0}=0 \text { or } b_{0}=0 \\
& \Longrightarrow a \in I \text { or } b \in I
\end{aligned}
$$

Thus, I is a prime ideal in $\mathbb{Z}[x]$.
Not Maximal: An ideal I is called maximal if \nexists an ideal J s.t. $I \subsetneq J \subsetneq \mathbb{Z}[x]$
We want to find an ideal J s.t. $I \subsetneq J \subsetneq \mathbb{Z}[x]$
Let J consist of all elements with an even constant term
Then $I \subsetneq J \subsetneq \mathbb{Z}[x]$
J is an ideal because for $a \in J$ and $b \in \mathbb{Z}[x]$,
$a b$ and $b a$ have even constant term $a_{0} b_{0}$, since a_{0} is even and $b_{0} \in \mathbb{Z}$ and $(J,+)$ is closed under addition and inverses and contains the identity 0.
(b) Prove that $\mathbb{Z}[x]$ is not a principal ideal domain

Solution.

A principal ideal domain is an integral domain (i.e. commutative ring with multiplicative identity and no zero divisors) in which every proper ideal can be generated by a single element.
J, as defined in part (a), is an ideal that is NOT principal.
$5 x+2 \in J$ but it cannot be reduced in $\mathbb{Z}[x]$
\Longrightarrow If $\mathbb{Z}[x]$ is a PID, then J must be a principal ideal and generated $5 x+2$.
But $x+2 \in K$ and $x+2 \notin\langle 5 x+2\rangle$.
$\Longrightarrow J$ is not a principal ideal
$\Longrightarrow \mathbb{Z}[x]$ is not a PID.

